ExB workshop November 1 2018 Princeton NJ

1

Low-frequency plasma oscillations in Hall thrusters

Ken Hara Assistant Professor Aerospace Engineering, Texas A&M University Plasma Dynamics Modeling Laboratory

TWO TYPES OF BREATHING MODE? (STANDING VS. TRAVELING)

Current, I, 522

Discharge (

A M

Lobbia Langmuir probe (200 V, 2A)

[Lobbia PhD 2010]

2

Standing wave? (with high electron mobility)

Traveling wave? (with no anomalous mobility)

STANDING WAVE BREATHING MODE: 1D HYBRID DK-FLUID SIMULATION

- Discharge channel of SPT-100 ML [Gascon '03]
 - Peak magnetic field: 100 G 200 G
 - Anode mass flow rate: 5.0 mg/s
 - Discharge voltage: 300V
- Hybrid DK-Fluid model [Hara, PoP 2012]
 - Ion: direct kinetic (DK) model
 - Electron continuum model
 - Electron: Drift-diffusion approximation (Ohm's law)
 - SEE depends on electron thermal energy (not total energy)
 - Anomalous mobility: two-region (inside channel: 1/160, outside: 1/16)
 - Electronically excited atoms + ground state atoms. Multispecies Hall thruster simulation with plasma reactions.

[Hara, Sekerak, Boyd, & Gallimore, JAP 115, 203304 (2014)]

VALIDITY OF ELECTRON FLUID MODEL IN MAGNETIZED ELECTRONS

Mass
$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = \dot{n},$$
 $S_{heat} = \mathbf{j} \cdot \mathbf{E},$ $S_{trans} = \mathbf{u} \cdot (\mathbf{R} - \nabla p),$ Momentum $\frac{\partial(mn\mathbf{u})}{\partial t} + \nabla \cdot (mn\mathbf{u}\mathbf{u} + \bar{P}) = qn(\mathbf{E} + \mathbf{u} \times \mathbf{B}) + \mathbf{R},$
Total energy• $(mom. eq) \cdot \mathbf{u}$
• $K = \frac{1}{2}m|\mathbf{u}|^2 \approx \frac{1}{2}mu_{\theta}^2$ Total energy $\frac{\partial(n\epsilon)}{\partial t} + \nabla \cdot (n\epsilon\mathbf{u} + \mathbf{u} \cdot \bar{P} + \mathbf{q}) = \mathbf{j} \cdot \mathbf{E} + S,$ • $K = \frac{1}{2}m|\mathbf{u}|^2 \approx \frac{1}{2}mu_{\theta}^2$ [Hara (unpublished)]Kinetic energy $\frac{\partial(nK)}{\partial t} + \nabla \cdot (nK\mathbf{u}) = S_{heat} - S_{trans} - nK\nu_{ion}$ Internal energy $\frac{\partial(ne)}{\partial t} + \nabla \cdot [(ne + p)\mathbf{u}] = S_{trans} + nK\nu_{ion} + S,$

(i) If K = 0 (non-magnetized), $S_{heat} = S_{trans}$ Total energy input (j.E) goes to the internal energy (temperature).

(ii) If $K \neq 0$ (magnetized = drift!), $S_{heat} = \mathbf{j} \cdot \mathbf{E} \neq S_{trans}$ Recommended to solve the "total energy equation" and subtract the "kinetic energy" to get temperature.

PREDICTED SPT-100 SIMULATION RESULTS SHOW GOOD QUALITATIVE AGREEMENT WITH H6 EXPERIMENTS.

STABILIZATION OF BREATHING MODE: ELECTRON HEAT FLUX

- Electron heating = **Joule heating**
- Electron cooling
 - Oscillatory; B=120G:
 - Small wall heat flux
 - Large convective heat flux
 - Stable; B=180G:
 - Large wall heat flux
 - Small convective heat flux
- Electron heat transfer plays an important role in "low frequency" ionization oscillations,

ELECTRON-PRESSURE COUPLING CAN INITIATE GRID-LEVEL OSCILLATIONS

 Nonmagnetized ion momentum equation (uncoupled)

$$\frac{\partial(n_i \mathbf{u}_i)}{\partial t} + \nabla \left(n_i \mathbf{u}_i \mathbf{u}_i + \frac{p_i}{m_i} \right) = \frac{e}{m_i} n_i \mathbf{E},$$

• Using electron drift-diffusion model

$$\mathbf{E} = -\frac{\mathbf{u}_e}{\mu_\perp} - \frac{1}{en_i} \nabla(n_i k_B T_e)$$

• Electron pressure coupled

$$\frac{\partial(n_i \mathbf{u}_i)}{\partial t} + \nabla \left(n_i \mathbf{u}_i \mathbf{u}_i + \frac{p_i + p_e}{m_i} \right) = -\frac{e n_i \mathbf{u}_e}{m_i \mu_\perp}.$$

[Hara (unpublished)]

PREDATOR-PREY TYPE MODEL DAMPED OSCILLATION WITH NO TE FLUCTUATION

STRATEGY FOR IONIZATION OSCILLATION THEORY

 Minimum Te (T_{e,min}) required for a steadystate discharge plasma

T _e <t<sub>e,min</t<sub>	No steady-state ion density	Unstable mode
T _e > T _{e,min}	Steady-state ion density	Gamma<0 (stable)
		Gamma >0 (ionization instability)

Linear growth rate of ionization instability

AZIMUTHALLY ROTATING SPOKES ON 2D Z-Θ SIMULATIONS

A quasi-neutral hybrid-PIC model

- Long-time calculation is required for full cylinder of channel (1-10 cm) to capture the "low-frequency" (~1 ms) phenomena
 - $\quad \begin{array}{l} \mbox{Full-PIC model is not feasible yet} \\ \frac{\lambda_{\rm spoke}}{\lambda_{\rm Debye}} \sim 10^4 \quad \left(\frac{\omega_{\rm spoke}}{\omega_{\rm plasma}}\right)^{-1} \sim 10^6 \end{array}$
- However, 2D electron fluid model for magnetized electrons is numerically challenging.²

¹Fernandez et al 2015; Lam 2015 ²Hara and Boyd 2015.

Cylindrical Hall thruster (PPPL)

PSEUDO-TIME STEPPING METHOD

Finding "converged" solution to elliptic PDE is numerically challenging due ٠ to "ill-conditioned" matrix. Off-diagonal elements are dominant.

Elliptic PDE

$$abla \cdot \left(n_{\mathrm{e}}\left[\mu\right]
abla \phi \, - \left[\mu\right]
abla \left(n_{\mathrm{e}} T_{\mathrm{e}}
ight)
ight) = n_{\mathrm{e}}
u_{\mathrm{ion}}$$

Discretized equation

$$\begin{pmatrix} 1 & \cdots & \Omega_e \\ \vdots & \ddots & \vdots \\ -\Omega_e & \cdots & 1 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_N \end{pmatrix} = (RHS)$$

Pseudo-time stepping method of electron drift-diffusion model • $\underline{n_{\rm e}} \partial \phi' - \nabla \cdot (n_{\rm e} \vec{u}_{\rm e}) = -n_{\rm e} \nu_{\rm ion}$

- Continuity equation

Momentum equation

$$\frac{T_{\rm e} \partial t}{\frac{1}{\sqrt{r_{\rm e} 0}} \frac{\partial}{\partial t} (n_{\rm e} \vec{u}_{\rm e}) - n_{\rm e} \left[\mu\right] \nabla \phi + \left[\mu\right] \nabla (n_{\rm e} T_{\rm e}) = -n_{\rm e} \vec{u}_{\rm e}$$

[Kawashima et al. J. Comp. Phys. (2015)] [Hara, Ph.D. UM (2015)]

"STABLE" LONG-TIME (>1 MS) SPOKE PROPAGATION

Ion number density distribution

Space potential distribution

A stable simulation of azimuthally rotating spoke is achieved for over 1 ms

UNAMBIGUOUS SIGNAL OF ROTATING STRUCTURE

- A coherent structure (self-organization) rotating with m = 1 mode.
- Axial electron temperature profile is *quasi-static* in time. = No axial ionization oscillation (breathing mode; m = 0)

POSSIBLE MECHANISMS PROPOSED IN LITERATURE

- 2. Frias's Dispersion Relation² (2013)
- 3. Critical Ionization Velocity(CIV)
 - Propagation of ionization front (Kinetic energy of spoke = ionization energy), but no growth rate.³
- 4. ElectroStatic Ion Cyclotron(ESIC)

$$v_{CIV} = \sqrt{\frac{2e\epsilon_{ion}}{m_i}}$$

Phase velocity of RS was close to that of ion cyclotron oscillation in a 6 kW-level HET, but no growth rate,⁴

$$\omega^2 = k_\theta^2 u_{
m s}^2 + \omega_{
m c,}^2$$

¹Esipchuk and Tilinin, SPTP 21 (1976). ²Frias et al., PoP 19 (2013). ³Boeuf, JAP 121 (2017). ⁴Sekerak, Univ. of Michigan Ph.D. Thesis (2014).

AGREEMENT WITH GRADIENT-DRIFT INSTABILITY THEORY

- 1D axial results (azimuthally averaged) are inserted into the dispersion relations.
- Large growth rate from gradient drift instability is observed in the downstream region.

	z,mm	$v_{\rm p},{\rm m/s}$	Difference from Simulation
Simulation	_	2,500	_
Esipchuk	32.3	2,620	4.8%
Frias	31.3	2,200	12.0%
CIV	—	4,200	68.0%
ESIC	12.5	1,840	26.4%

Phase velocity comparison

HYPOTHESIS OF ROTATING SPOKE MECHANISM

- 1. Azimuthal perturbation (e.g., plasma density) grows based on linear instability of gradient drift wave depending on ∇n_e , ∇B at downstream.
- 2. Ionization rate ($\dot{n_e} = n_e N_g k_{ion}$) becomes azimuthally nonuniform, then neutral atom (N_g) also becomes azimuthally nonuniform.

3. Saturated state (i.e., spoke) propagates with phase velocity of the largest growth rate of the instability.

CONCLUSION

- Breathing mode, axial ionization oscillation, is studied
- Azimuthally rotating spokes are observed using a quasineutral 2D hybrid fluid-PIC model
 - Numerical methods (e.g., fluid, kinetic, hybrid-kinetic) to be developed to capture these low-frequency oscillations
 - Various mechanisms to observe such low-frequency oscillation (e.g., cathode-coupling, wave growth model, convective instabilities)
 - Self-organization due to small scale phenomena plays an important role in plasma physics.

